
stcal
Release 1.7.1.dev2+gfa14c81.d20240423

STScI <help@stsci.edu>

Apr 23, 2024

CONTENTS:

1 API 1
1.1 stcal API . 1

2 Indices and tables 3
2.1 Package Documentation . 3

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

API

1.1 stcal API

1.1.1 stcal Package

1

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

2 Chapter 1. API

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

2.1 Package Documentation

2.1.1 Package Index

Jump Detection

Algorithm

This routine detects jumps by looking for outliers in the up-the-ramp signal for each pixel in each integration within an
input exposure. On output, the GROUPDQ array is updated with the DQ flag “JUMP_DET” to indicate the location
of each jump that was found. In addition, any pixels that have non-positive or NaN values in the gain reference file
will have DQ flags “NO_GAIN_VALUE” and “DO_NOT_USE” set in the output PIXELDQ array. The SCI and ERR
arrays of the input data are not modified.

The current implementation uses the two-point difference method described in Anderson & Gordon (2011).

Two-Point Difference Method

The two-point difference method is applied to each integration as follows:

1. Compute the first differences for each pixel (the difference between adjacent groups)

2. Compute the clipped median (dropping the largest difference) of the first differences for each pixel. If there are
only three first difference values (four groups), no clipping is performed when computing the median.

3. Use the median to estimate the Poisson noise for each group and combine it with the read noise to arrive at an
estimate of the total expected noise for each difference.

4. Compute the “difference ratio” as the difference between the first differences of each group and the median,
divided by the expected noise.

5. If the largest “difference ratio” is greater than the rejection threshold, flag the group corresponding to that ratio
as having a jump.

6. If a jump is found in a given pixel, iterate the above steps with the jump-impacted group excluded, looking for
additional lower-level jumps that still exceed the rejection threshold.

3

https://ui.adsabs.harvard.edu/abs/2011PASP..123.1237A

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

7. Stop iterating on a given pixel when no new jumps are found or only one difference remains.

8. If there are only two differences (three groups), the smallest one is compared to the larger one and if the larger
one is above a threshold, it is flagged as a jump.

9. If flagging of the 4 neighbors is requested, then the 4 adjacent pixels will have ramp jumps flagged in the same
group as the central pixel as long as it has a jump between the min and max requested levels for this option.

10. If flagging of groups after a ramp jump is requested, then the groups in the requested time since a detected ramp
jump will be flagged as ramp jumps if the ramp jump is above the requested threshold. Two thresholds and times
are possible for this option.

Note that any ramp groups flagged as SATURATED in the input GROUPDQ array are not used in any of the above
calculations and hence will never be marked as containing a jump.

Ramp Fitting

Description

This step determines the mean count rate, in units of counts per second, for each pixel by performing a linear fit to the
data in the input file. The fit is done using the “ordinary least squares” method. The fit is performed independently for
each pixel.

The count rate for each pixel is determined by a linear fit to the cosmic-ray-free and saturation-free ramp intervals for
each pixel; hereafter this interval will be referred to as a “segment.” The fitting algorithm uses an ‘optimal’ weighting
scheme, as described by Fixsen et al. (2011).

Segments are determined using the 4-D GROUPDQ array of the input data set, under the assumption that the jump
step will have already flagged CR’s. Segments are terminated where saturation flags are found. Pixels are processed
simultaneously in blocks using the array-based functionality of numpy. The size of the block depends on the image
size and the number of groups.

Output Products

There are two output products created by default, with a third optional product also available:

1. The primary output file (“rate”) contains slope and variance/error estimates for each pixel that are the result of
averaging over all integrations in the exposure. This is a product with 2-D data arrays.

2. The secondary product (“rateints”) contains slope and variance/error estimates for each pixel on a per-integration
basis, stored as 3-D data cubes.

3. The third, optional, output product contains detailed fit information for every ramp segment for each pixel.

RATE Product

After computing the slopes and variances for all segments for a given pixel, the final slope is determined as a weighted
average from all segments in all integrations, and is written to the “rate” output product. In this output product, the 4-D
GROUPDQ from all integrations is collapsed into 2-D, merged (using a bitwise OR) with the input 2-D PIXELDQ,
and stored as a 2-D DQ array. The 3-D VAR_POISSON and VAR_RNOISE arrays from all integrations are averaged
into corresponding 2-D output arrays. In cases where the median rate for a pixel is negative, the VAR_POISSON is set
to zero, in order to avoid the unphysical situation of having a negative variance.

4 Chapter 2. Indices and tables

https://ui.adsabs.harvard.edu/abs/2000PASP..112.1350F

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

RATEINTS Product

The slope images for each integration are stored as a data cube in “rateints” output data product. Each plane of the
3-D SCI, ERR, DQ, VAR_POISSON, and VAR_RNOISE arrays in this product corresponds to the result for a given
integration. In this output product, the GROUPDQ data for a given integration is collapsed into 2-D and then merged
with the input 2-D PIXELDQ array to create the output DQ array for each integration. The 3-D VAR_POISSON and
VAR_RNOISE arrays are calculated by averaging over the fit segments in the corresponding 4-D variance arrays.

FITOPT Product

A third, optional output product is also available and is produced only when the step parameter save_opt is True (the
default is False). This optional product contains 4-D arrays called SLOPE, SIGSLOPE, YINT, SIGYINT, WEIGHTS,
VAR_POISSON, and VAR_RNOISE, which contain the slopes, uncertainties in the slopes, y-intercept, uncertainty in
the y-intercept, fitting weights, variance of the slope due to poisson noise, and the variance of the slope due to read
noise for each segment of each pixel, respectively. The y-intercept refers to the result of the fit at an effective exposure
time of zero. This product also contains a 3-D array called PEDESTAL, which gives the signal at zero exposure time
for each pixel, and the 4-D CRMAG array, which contains the magnitude of each group that was flagged as having a
CR hit.

By default, the name of this output file will have the product type suffix “_fitopt”. In this optional output product, the
pedestal array is calculated for each integration by extrapolating the final slope (the weighted average of the slopes of all
ramp segments in the integration) for each pixel from its value at the first group to an exposure time of zero. Any pixel
that is saturated on the first group is given a pedestal value of 0. Before compression, the cosmic-ray magnitude array
is equivalent to the input SCI array but with the only nonzero values being those whose pixel locations are flagged in
the input GROUPDQ as cosmic ray hits. The array is compressed, removing all groups in which all the values are 0 for
pixels having at least one group with a non-zero magnitude. The order of the cosmic rays within the ramp is preserved.

Special Cases

If the input dataset has only one group in each integration (NGROUPS=1), the count rate for all unsaturated pixels
in each integration will be calculated as the value of the science data in the one group divided by the group time. If
the input dataset has only two groups per integration (NGROUPS=2), the count rate for all unsaturated pixels in each
integration will be calculated using the differences between the two valid groups of the science data divided by the
group time.

For datasets having more than one group in each integration (NGROUPS>1), a ramp having a segment with only one
good group is processed differently depending on the number and size of the other segments in the ramp. If a ramp
has only one segment and that segment contains a single group, the count rate will be calculated to be the value of the
science data in that group divided by the group time. If a ramp has a segment with only one good group, and at least
one other segment having more than one good group, only data from the segment(s) having more than one good group
will be used to calculate the count rate.

For ramps in a given integration that are saturated beginning in their second group, the count rate for that integration
will be calculated as the value of the science data in the first group divided by the group time, but only if the step
parameter suppress_one_group is set to False. If set to True, the computation of slopes for pixels that have only
one good group will be suppressed and the slope for that integration will be set to zero.

2.1. Package Documentation 5

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

Slope and Variance Calculations

Slopes and their variances are calculated for each segment, for each integration, and for the entire exposure. As defined
above, a segment is a set of contiguous groups where none of the groups is saturated or cosmic ray-affected. The
appropriate slopes and variances are output to the primary output product, the integration-specific output product,
and the optional output product. The following is a description of these computations. The notation in the equations
is the following: the type of noise (when appropriate) will appear as the superscript ‘R’, ‘P’, or ‘C’ for readnoise,
Poisson noise, or combined, respectively; and the form of the data will appear as the subscript: ‘s’, ‘i’, ‘o’ for segment,
integration, or overall (for the entire dataset), respectively.

It is possible for an integration or pixel to have invalid data, so usable slope data will not be available. If a pixel has an
invalid integration, the value for that integration for that pixel will be set to NaN in the rateints product. Further, if all
integrations for a given pixel are invalid the pixel value for the rate product will be set to NaN. An example of invalid
data would be a fully saturated integration for a pixel.

Optimal Weighting Algorithm

The slope of each segment is calculated using the least-squares method with optimal weighting, as described by Fixsen
et al 2000 and Regan 2007, JWST-STScI-001212. Optimal weighting determines the relative weighting of each sample
when calculating the least-squares fit to the ramp. When the data have low signal-to-noise ratio 𝑆, the data are read
noise dominated and equal weighting of samples is the best approach. In the high signal-to-noise regime, data are
Poisson-noise dominated and the least-squares fit is calculated with the first and last samples. In most practical cases,
the data will fall somewhere in between, where the weighting is scaled between the two extremes.

The signal-to-noise ratio 𝑆 used for weighting selection is calculated from the last sample as:

𝑆 =
𝑑𝑎𝑡𝑎× 𝑔𝑎𝑖𝑛√︀

(𝑟𝑒𝑎𝑑_𝑛𝑜𝑖𝑠𝑒)2 + (𝑑𝑎𝑡𝑎× 𝑔𝑎𝑖𝑛)
,

The weighting for a sample 𝑖 is given as:

𝑤𝑖 = (𝑖− 𝑖𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡)
𝑃 ,

where 𝑖𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 is the the sample number of the midpoint of the sequence, and 𝑃 is the exponent applied to weights,
determined by the value of 𝑆. Fixsen et al. 2000 found that defining a small number of P values to apply to values of
S was sufficient; they are given as:

Minimum S Maximum S P
0 5 0
5 10 0.4
10 20 1
20 50 3
50 100 6
100 10

6 Chapter 2. Indices and tables

https://ui.adsabs.harvard.edu/abs/2000PASP..112.1350F/abstract
https://ui.adsabs.harvard.edu/abs/2000PASP..112.1350F/abstract

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

Segment-specific Computations

The variance of the slope of a segment due to read noise is:

𝑣𝑎𝑟𝑅𝑠 =
12 𝑅2

(𝑛𝑔𝑟𝑜𝑢𝑝𝑠3𝑠 − 𝑛𝑔𝑟𝑜𝑢𝑝𝑠𝑠)(𝑡𝑔𝑟𝑜𝑢𝑝2)
,

where 𝑅 is the noise in the difference between 2 frames, 𝑛𝑔𝑟𝑜𝑢𝑝𝑠𝑠 is the number of groups in the segment, and 𝑡𝑔𝑟𝑜𝑢𝑝
is the group time in seconds (from the keyword TGROUP).

The variance of the slope in a segment due to Poisson noise is:

𝑣𝑎𝑟𝑃𝑠 =
𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡 + 𝑑𝑎𝑟𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑡𝑔𝑟𝑜𝑢𝑝× 𝑔𝑎𝑖𝑛 (𝑛𝑔𝑟𝑜𝑢𝑝𝑠𝑠 − 1)
,

where 𝑔𝑎𝑖𝑛 is the gain for the pixel (from the GAIN reference file), in e/DN. The 𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡 is an overall estimated slope
of the pixel, calculated by taking the median of the first differences of the groups that are unaffected by saturation and
cosmic rays, in all integrations. This is a more robust estimate of the slope than the segment-specific slope, which may
be noisy for short segments. The contributions from the dark current are added when present; the value can be provided
by the user during the jwst.dark_current.DarkCurrentStep, or it can be specified in scalar or 2D array form by the dark
reference file.

The combined variance of the slope of a segment is the sum of the variances:

𝑣𝑎𝑟𝐶𝑠 = 𝑣𝑎𝑟𝑅𝑠 + 𝑣𝑎𝑟𝑃𝑠

Integration-specific computations

The variance of the slope for an integration due to read noise is:

𝑣𝑎𝑟𝑅𝑖 =
1∑︀

𝑠
1

𝑣𝑎𝑟𝑅𝑠

,

where the sum is over all segments in the integration.

The variance of the slope for an integration due to Poisson noise is:

𝑣𝑎𝑟𝑃𝑖 =
1∑︀

𝑠
1

𝑣𝑎𝑟𝑃𝑠

The combined variance of the slope for an integration due to both Poisson and read noise is:

𝑣𝑎𝑟𝐶𝑖 =
1∑︀

𝑠
1

𝑣𝑎𝑟𝑅𝑠 +𝑣𝑎𝑟𝑃𝑠

The slope for an integration depends on the slope and the combined variance of each segment’s slope:

𝑠𝑙𝑜𝑝𝑒𝑖 =

∑︀
𝑠

𝑠𝑙𝑜𝑝𝑒𝑠
𝑣𝑎𝑟𝐶𝑠∑︀

𝑠
1

𝑣𝑎𝑟𝐶𝑠

2.1. Package Documentation 7

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

Exposure-level computations

The variance of the slope due to read noise depends on a sum over all integrations:

𝑣𝑎𝑟𝑅𝑜 =
1∑︀

𝑖
1

𝑣𝑎𝑟𝑅𝑖

The variance of the slope due to Poisson noise is:

𝑣𝑎𝑟𝑃𝑜 =
1∑︀

𝑖
1

𝑣𝑎𝑟𝑃𝑖

The combined variance of the slope is the sum of the variances:

𝑣𝑎𝑟𝐶𝑜 = 𝑣𝑎𝑟𝑅𝑜 + 𝑣𝑎𝑟𝑃𝑜

The square-root of the combined variance is stored in the ERR array of the output product.

The overall slope depends on the slope and the combined variance of the slope of each integration’s segments, and
hence is a sum over integrations and segments:

𝑠𝑙𝑜𝑝𝑒𝑜 =

∑︀
𝑖,𝑠

𝑠𝑙𝑜𝑝𝑒𝑖,𝑠
𝑣𝑎𝑟𝐶𝑖,𝑠∑︀

𝑖,𝑠
1

𝑣𝑎𝑟𝐶𝑖,𝑠

Error Propagation

Error propagation in the ramp_fitting step is implemented by carrying along the individual variances in the slope
due to Poisson noise and read noise at all levels of calculations. The total error estimate at each level is computed as
the square-root of the sum of the two variance estimates.

In each type of output product generated by the step, the variance in the slope due to Poisson noise is stored in the
“VAR_POISSON” extension, the variance in the slope due to read noise is stored in the “VAR_RNOISE” extension,
and the total error is stored in the “ERR” extension. In the optional output product, these arrays contain information
for every segment used in the fitting for each pixel. In the “rateints” product they contain values for each integration,
and in the “rate” product they contain values for the exposure as a whole.

Data Quality Propagation

For a given pixel, if all groups in an integration are flagged as DO_NOT_USE or SATURATED, then that pixel will
be flagged as DO_NOT_USE in the corresponding integration in the “rateints” product. Note this does NOT mean
that all groups are flagged as SATURATED, nor that all groups are flagged as DO_NOT_USE. For example, slope
calculations that are suppressed due to a ramp containing only one good group will be flagged as DO_NOT_USE in
the first group, but not necessarily any other group, while only groups two and beyond are flagged as SATURATED.
Further, only if all integrations in the “rateints” product are flagged as DO_NOT_USE, then the pixel will be flagged
as DO_NOT_USE in the “rate” product.

For a given pixel, if all groups in an integration are flagged as SATURATED, then that pixel will be flagged as SAT-
URATED and DO_NOT_USE in the corresponding integration in the “rateints” product. This is different from the
above case in that this is only for all groups flagged as SATURATED, not for some combination of DO_NOT_USE and
SATURATED. Further, only if all integrations in the “rateints” product are flagged as SATURATED, then the pixel
will be flagged as SATURATED and DO_NOT_USE in the “rate” product.

For a given pixel, if any group in an integration is flagged as JUMP_DET, then that pixel will be flagged as JUMP_DET
in the corresponding integration in the “rateints” product. That pixel will also be flagged as JUMP_DET in the “rate”
product.

8 Chapter 2. Indices and tables

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

Alignment Utils

Description

This sub-package contains all the modules common to all missions.

stcal.alignment Package

Functions

calc_rotation_matrix(roll_ref, v3i_yangle[, ...]) Calculate the rotation matrix.
compute_fiducial(wcslist[, bounding_box]) Calculates the world coordinates of the fiducial point of

a list of WCS objects.
compute_scale(wcs, fiducial[, disp_axis, ...]) Compute the scale at the fiducial point on the detector..
reproject(wcs1, wcs2) Given two WCSs or transforms return a function which

takes pixel coordinates in the first WCS or transform and
computes them in pixel coordinates in the second one.

wcs_from_footprints(dmodels[, refmodel, ...]) Create a WCS from a list of input datamodels.

calc_rotation_matrix

stcal.alignment.calc_rotation_matrix(roll_ref: float, v3i_yangle: float, vparity: int = 1)→ list[float]
Calculate the rotation matrix.

Parameters

• roll_ref (float) – Telescope roll angle of V3 North over East at the ref. point in radians

• v3i_yangle (float) – The angle between ideal Y-axis and V3 in radians.

• vparity (int) – The x-axis parity, usually taken from the JWST SIAF parameter VIdlParity.
Value should be “1” or “-1”.

Returns
matrix – A list containing the rotation matrix elements in column order.

Return type
list

Notes

The rotation matrix is

𝑃𝐶 =

𝑏𝑒𝑔𝑖𝑛𝑏𝑚𝑎𝑡𝑟𝑖𝑥𝑝𝑐1,1𝑝𝑐2,1

𝑝𝑐1,2𝑝𝑐2,2

𝑒𝑛𝑑𝑏𝑚𝑎𝑡𝑟𝑖𝑥

2.1. Package Documentation 9

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

compute_fiducial

stcal.alignment.compute_fiducial(wcslist: list, bounding_box: tuple | list | None = None)→ ndarray
Calculates the world coordinates of the fiducial point of a list of WCS objects. For a celestial footprint this is the
center. For a spectral footprint, it is the beginning of its range.

Parameters

• wcslist (list) – A list containing all the WCS objects for which the fiducial is to be cal-
culated.

• bounding_box (tuple, list, None) – The bounding box over which the WCS is valid.
It can be a either tuple of tuples or a list of lists of size 2 where each element represents a
range of (low, high) values. The bounding_box is in the order of the axes, axes_order. For
two inputs and axes_order(0, 1) the bounding box can be either ((xlow, xhigh), (ylow, yhigh))
or [[xlow, xhigh], [ylow, yhigh]].

Returns
fiducial – A two-elements array containing the world coordinates of the fiducial point in the
combined output coordinate frame.

Return type
numpy.ndarray

Notes

This function assumes all WCSs have the same output coordinate frame.

compute_scale

stcal.alignment.compute_scale(wcs: WCS, fiducial: tuple | ndarray, disp_axis: int | None = None,
pscale_ratio: float | None = None)→ float

Compute the scale at the fiducial point on the detector..

Parameters

• wcs (WCS) – Reference WCS object from which to compute a scaling factor.

• fiducial (tuple) – Input fiducial of (RA, DEC) or (RA, DEC, Wavelength) used in calcu-
lating reference points.

• disp_axis (int) – Dispersion axis integer. Assumes the same convention as wcsinfo.
dispersion_direction

• pscale_ratio (int) – Ratio of input to output pixel scale

Returns
scale – Scaling factor for x and y or cross-dispersion direction.

Return type
float

10 Chapter 2. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

reproject

stcal.alignment.reproject(wcs1, wcs2)
Given two WCSs or transforms return a function which takes pixel coordinates in the first WCS or transform and
computes them in pixel coordinates in the second one. It performs the forward transformation of wcs1 followed
by the inverse of wcs2.

Parameters

• wcs1 (astropy.wcs.WCS or gwcs.wcs.WCS) – Input WCS objects or transforms.

• wcs2 (astropy.wcs.WCS or gwcs.wcs.WCS) – Output WCS objects or transforms.

Returns

• Function to compute the transformations. It takes x, y

• positions in wcs1 and returns x, y positions in wcs2.

wcs_from_footprints

stcal.alignment.wcs_from_footprints(dmodels, refmodel=None, transform=None, bounding_box=None,
pscale_ratio=None, pscale=None, rotation=None, shape=None,
crpix=None, crval=None)

Create a WCS from a list of input datamodels.

A fiducial point in the output coordinate frame is created from the footprints of all WCS objects. For a spatial
frame this is the center of the union of the footprints. For a spectral frame the fiducial is in the beginning of
the footprint range. If refmodel is None, the first WCS object in the list is considered a reference. The output
coordinate frame and projection (for celestial frames) is taken from refmodel. If transform is not supplied, a
compound transform is created using CDELTs and PC. If bounding_box is not supplied, the bounding_box of
the new WCS is computed from bounding_box of all input WCSs.

Parameters

• dmodels (list) – A list of valid datamodels.

• refmodel – A valid datamodel whose WCS is used as reference for the creation of the output
coordinate frame, projection, and scaling and rotation transforms. If not supplied the first
model in the list is used as refmodel.

• transform (Model) – A transform, passed to gwcs.wcstools.wcs_from_fiducial() If
not supplied Scaling | Rotation is computed from refmodel.

• bounding_box (tuple) – Bounding_box of the new WCS. If not supplied it is computed
from the bounding_box of all inputs.

• pscale_ratio (float, None) – Ratio of input to output pixel scale. Ignored when either
transform or pscale are provided.

• pscale (float, None) – Absolute pixel scale in degrees. When provided, overrides
pscale_ratio. Ignored when transform is provided.

• rotation (float, None) – Position angle of output image’s Y-axis relative to North. A
value of 0.0 would orient the final output image to be North up. The default of None specifies
that the images will not be rotated, but will instead be resampled in the default orientation
for the camera with the x and y axes of the resampled image corresponding approximately
to the detector axes. Ignored when transform is provided.

2.1. Package Documentation 11

https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://docs.python.org/3/library/stdtypes.html#list
https://docs.astropy.org/en/stable/api/astropy.modeling.Model.html#astropy.modeling.Model
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcstools.wcs_from_fiducial.html#gwcs.wcstools.wcs_from_fiducial
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

• shape (tuple of int, None) – Shape of the image (data array) using numpy.ndarray
convention (ny first and nx second). This value will be assigned to pixel_shape and
array_shape properties of the returned WCS object.

• crpix (tuple of float, None) – Position of the reference pixel in the image array. If
crpix is not specified, it will be set to the center of the bounding box of the returned WCS
object.

• crval (tuple of float, None) – Right ascension and declination of the reference pixel.
Automatically computed if not provided.

Returns
wcs_new – The WCS object corresponding to the combined input footprints.

Return type
WCS

12 Chapter 2. Indices and tables

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://gwcs.readthedocs.io/en/latest/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS

PYTHON MODULE INDEX

s
stcal, 1
stcal.alignment, 9

13

stcal, Release 1.7.1.dev2+gfa14c81.d20240423

14 Python Module Index

INDEX

C
calc_rotation_matrix() (in module stcal.alignment),

9
compute_fiducial() (in module stcal.alignment), 10
compute_scale() (in module stcal.alignment), 10

M
module

stcal, 1
stcal.alignment, 9

R
reproject() (in module stcal.alignment), 11

S
stcal

module, 1
stcal.alignment
module, 9

W
wcs_from_footprints() (in module stcal.alignment),

11

15

	API
	stcal API
	stcal Package

	Indices and tables
	Package Documentation
	Package Index
	Jump Detection
	Algorithm
	Two-Point Difference Method

	Ramp Fitting
	Description
	Output Products
	RATE Product
	RATEINTS Product
	FITOPT Product
	Special Cases
	Slope and Variance Calculations
	Optimal Weighting Algorithm
	Segment-specific Computations
	Integration-specific computations
	Exposure-level computations
	Error Propagation
	Data Quality Propagation

	Alignment Utils
	Description
	stcal.alignment Package
	Functions
	calc_rotation_matrix
	compute_fiducial
	compute_scale
	reproject
	wcs_from_footprints

	Python Module Index
	Index

